
Free Spider Web development
for

Free Pascal/Lazarus
user's manual

FreeSpider Version 1.3.3
Modified: 13.Apr.2013
Author: Motaz Abdel Azeem
Home Page : http://code - sd. com /freespider
License: LGPL

Introduction:

Free Spider is a web development package for Lazarus. You can create any web application in Linux,
Windows, Mac or any other platform that already supported by FreePascal/Lazarus. Lazarus produces
independent native executable files and libraries.
With FreeSpider you can produce CGI web applications and Apache Module web applications.

Produced FreeSpider web application is a compiled code, it is not like scripting language, no need for
parsing and compilation at run-time on every request, for that reason its response is very fast.

How to create Free Spider web applications

There are two types of web applications if FreeSpider: CGI and Apache module:

1. CGI Web application

To create Free Spider CGI web application follow these steps:

1. In Lazarus IDE main menu select File/New.. select FreeSpider CGI Web Application

http://code-sd.com/freespider

2. Put TSpiderCGI component in the data module in main.pas unit , select it from FreeSpider page

3. Double click on Data Module or select OnCreate event and write this code on it:

SpiderCGI1.Execute;

4. Double click on SpiderCGI1 component or select OnRequest event on that component and write
this code on it:

 Response.ContentType:= 'text/html; charset=UTF­8';
 Response.Add('Hello world');

5. Change application output directory to your web application cgi-bin directory, such as
/usr/lib/cgi-bin in Linux. You can change this settings by clicking Project menu/Project
Options/Application Tab/Output settings group/Target file name, then you can write your
application name after cgi-bin path. Make sure cgi-bin directory is writable.

6. Suppose that your project name is first, then you can call it from your browser like this in
Linux:

http://localhost/cgi-bin/first

In windows it should be:

http://localhost/cgi-bin/first.exe

7. If you get error in browser, make sure that cgi-bin is properly configured and you have this
option in it's configuration:

 Options ExecCGI

http://localhost/cgi-bin/first
http://localhost/cgi-bin/first

2. Apache Module Web application

To create FreeSpider Apache Module Web application, follow these steps:

1. In Lazarus IDE main menu select File/New.. select FreeSpider Apache Module Web Application

2. Put TSpiderApache component in the data module in main.pas unit, select it from FreeSpider
page

3. Double click on SpiderApache1 component or select OnRequest event on that component and
write this code on it:

 Response.ContentType:= 'text/html; charset=UTF­8';
 Response.Add('Hello world');

4. Save your project. Change it's default name from mod_proj1 to mod_first for example.

5. Open project source (mod_first) file, you will find these constants:

const

 MODULE_NAME = 'mod_proj1.so';
 MODNAME = 'apache_mod1';
 HANDLER_NAME = 'proj1­handler';

Change them to these settings:

const

 MODULE_NAME = 'mod_first.so';
 MODNAME = 'apache_first';
 HANDLER_NAME = 'first-handler';

Hanlder_Name value should be unique in your sever

6. make sure that your web module class name is matching this procedure in project source code:

function DefaultHandler(r: Prequest_rec): Integer; cdecl;
begin
 Result:= ProcessHandler(r, TDataModule1, MODULE_NAME, HANDLER_NAME, False);
end;

In our case it is TDataModule1, if you want to change Data Module name, then change it back in this
procedure.

7. At projects options/Compiler Options, add FreeSpider directory in other unit files

At Code generation uncheck Relocatable option (-WR) if it is checked.

Remove this line if you find it in project's source code:

 Application.Title:='Spider Apache Module';

This line is automatically added when you modify project options.

8. Compile your project and copy produced library into Apache module directory, e.g. in Ubuntu:

 sudo cp libmod_first.so /usr/lib/apache2/modules/mod_first.so

In Windows copy mod_first.dll library file to any directory or leave it in it's original project folder.

 9. Open /etc/apache2/apache2.conf file and add this configuration (Ubunto):

LoadModule apache_first /usr/lib/apache2/modules/mod_first.so

<Location /first>
 SetHandler first-handler
</Location>

In Windows:

LoadModule apache_first c:\projects\firstapache\mod_first.dll

<Location /first>
 SetHandler first-handler
</Location>

10. Restart Apache web server. e.g. in Ubuntu:

sudo /etc/init.d/apache2 restart

11. In your browser type this URL:

http://localhost/first

http://localhost/cgi-bin/first

Notes:

At each time when you have modified your Apache module web application you need to deploy it
again and restart Apache. In Windows you should stop Apache before copying the new library, then
start it again after that.

It is better to start your development of any FreeSpider web application as CGI, because it is easier to
deploy, re-deploy, and test. You don't need restart Apache in every new version of your web
application.

When you need to deploy your web application in its final production server, it is better to produce
Apache Module library of your web application. Apache Module Library can handle a lot of concurrent
requests, and uses less memory and CPU than CGI version. In the next topics you will find how to
maintain two versions of your web application: CGI and Apache Module at the same time.

Apache Module is very sensitive and it work inside Apache memory, so that if you miss-configured it,
it could prevent Apache service from start. CGI is working outside web server memory so that it is
more safer in low traffic web applications.

Thread pooling is a feature which makes your database-web application response more faster. This
feature can be used only with Apache Module, you can read about it later in this manual.

CGI web application can work in many standard web servers like: Apache, NGNIX and IIS, while
Apache Module is designed only for Apache web server.

If you have 32 bit of Apache web server, then you should compile Apache Module using 32 bit
Lazarus, and 64 bit Lazarus for 64 bit Apache web server.

Request object:

Request Object of TSpiderCGI / TSpiderApache OnRequest event contains user request information,
such as query fields that has been called with web application's URL like this:

CGI application:

http://localhost/cgi-bin/first?name=Mohammed&address=Khartoum

Apache module application:

http://localhost/first?name=Mohammed&address=Khartoum

Then you can access this query information like this:

 UserName:= Request.Query('name');
 Address:= Request.Query('address');

Also you can access it from Query's String List:

 UserName:= Request.QueryFields.values['name'];
 Address:= Request.QueryFields.values['address'];

In Query you will find the data that has been sent in the URL or submitted in a from fields using GET
method.

If you are using POST method in HTML form, you can read it using Form method in Request object:

 Login:= Request.Form('login');
 Password:= Request.Form('password');

Also you can use ContentFields string list to access all posted data:

 Login:= ContentFields.values['login'];
 Password:= ContentFields.values['password'];

Request object also contains some user's browser information like UserAgent, and RemoteAddress of
the client and WebServerSoftware information.

Response object:

Response object of TSpiderCGI' / TSpiderApache OnRequest event represents the HTML response that
will be shown in user's browser after requesting the URL.

You can add HTML text response using Add method. You can use Add method many times to build the

http://localhost/cgi-bin/first?name=Mohammed&Address=Sudan
http://localhost/cgi-bin/first?name=Mohammed&address=Khartoum

whole HTML page. Add method accumulates HTML text in a string list, then at the end of OnRequest
event all these HTML that has been added will be displayed in the browser at once.

Example:

 Response.Add('Hello world
');
 Response.Add('This has been written in Object Pascal');

 TSpiderAction component

TSpiderCGI is needed for any CGI application in Free Spider web application, and TspiderApache is
needed for any FreeSpider's Apache module web application, but both components can handle only one
request/response (action) which has been requested from browser e.g:

http://localhost/cgi-bin/first
or
http://localhost/ first

TSpiderAction components can handle more additional request/response actions, for example suppose
that you have a web application which has many HTML forms, each form represent different request,
for example an e-mail system needs these request/response actions: register user, login, logout, view
Inbox, send e-mail, etc. You can call these requests like this:

http://localhost/cgi-bin/mail/login

http://localhost/cgi-bin/mail/logout

http://localhost/cgi-bin/mail/reg

http://localhost/cgi-bin/mail/inbox

/login, /logout, /reg, and /inbox parts are called Paths. Each TSpiderAction component can handle one
Path. In this case you will need 4 TSpiderAction components.

http://localhost/cgi-bin/mail/inbox
http://localhost/cgi-bin/mail/reg
http://localhost/cgi-bin/mail/logout
http://localhost/cgi-bin/mail/login
http://localhost/cgi-bin/first
http://localhost/cgi-bin/first
http://localhost/cgi-bin/first

TSpiderAction's Request and Response objects are the same like TSpiderCGI / TSpiderApache
Request/Response objects.

OnRequest event of TSpiderAction is typical to TSpiderCGI's / TSpiderApache OnRequest event. The
main difference is that TSpiderCGI / TSpiderApache OnRequest is called when no path information,
only CGI executable name or web module name, while TSpiderAction's OnRequest is called when the
user requests a URL that contains path after web application name, for example: /cgi-bin/mail/inbox

In every request, only one action will be triggered and its code will be executed.

 TSpiderTable component

TSpiderTable component generates HTML table, either manually or from a dataset.

This is an example of manually populated HTML table:

 SpiderTable1.SetHeader(['ID', 'Name', 'Telephone Number']);
 SpiderTable1.AddRow('', ['1', 'Mohammed', '01223311']);
 SpiderTable1.AddRow('#FFEEDD', ['2', 'Ahmed', '01754341']);
 SpiderTable1.AddRow('#FFDDEE', ['3', 'Omer', '045667890']);
 Response.Add(SpiderTable1.Contents);

This will generate a table in a browser like this:

ID Name Telephone Number
1 Mohammed 01223311
2 Ahmed 01754341
3 Omer 045667890

Note that SetHeader method overrides ColumnsCount property. You can leave ColumnsCount property
unchanged and let SpiderTable set it from the number of passed columns parameters. In the previous
example ColumnsCount will be set to 3 after calling SetHeader method.

Other mode for TSpiderTable is by linking it to DataSet. When you set a DataSet property either at
design time or at run time you will get a HTML table from that DataSet. e.g:

 SpiderTable1.DataSet:= ATable;
 ATable.Open;

 Response.Add(SpiderTable1.Contents);

TSpiderTable component contains two events:

OnDrawHeader: This event will be triggered when drawing Table's header
OnDrawDataCell: This event will be triggered when drawing each data cell

Both events contains CellData and BgColor properties for being drawn cell. Web Developer can
change them according to specific data values.

 TSpiderForm

TSpiderForm component generates HTML form to be used for entering data to be submitted to a web
action.
TSpiderForm important properties are:

1. Method: by default it is POST. Post method can transmit more data than Get method and data
that are being sent is not displayed in the URL. GET method sends data field values in the URL
like in our previous examples.

2. Action: represents receiver web action that handles this form data. It's format is:
(server/alias/web application/path). Example: /cgi-bin/mail/login

3. ExtraParam: contains additional form properties such as Java Script code, or encode type like
file upload multi part type which will talk about later in uploading files section.

4. PutInTable: by default it is True. If it is set to true, it puts table fields and labels (AddText) in a
table of two columns: first column contains the text that has been added by AddText, and second
column is the field that has been added by AddInput. If you call AddInput without AddText; then
this input will be displayed in the first column, the same like button on the example below.

Example of generating form:

 SpiderForm1.Clear;
 SpiderForm1.Action:= Request.RootURI + '/reg';
 SpiderForm1.AddText('Enter Subscriber ID: ');
 SpiderForm1.AddInput(itText, 'id', '');

 SpiderForm1.AddText('Enter Subscriber Name: ');
 SpiderForm1.AddInput(itText, 'subname', '');

 SpiderForm1.AddText('Address: ');
 SpiderForm1.AddInput(itText, 'address', '');

 SpiderForm1.AddText('Telephone Number: ');
 SpiderForm1.AddInput(itText, 'telephone', '');

 SpiderForm1.AddInput(itSubmit, 'add', 'Add');

 Response.Add(SpiderForm1.Contents);

This will generate a form in user's browser like this one:

Enter Subscriber ID:

Enter Subscriber Name:

Address:

Telephone Number:

Note:

If you put form's actions at design time like: /cgi-bin/mail/reg this will make your web application not
portable across operating systems and web technologies, e.g:

/cgi-bin/mail/reg will work for Linux only

/cgi-bin/mail.exe/reg will work for windows only

/mail/reg will work with Apache Module only

To prevent this dependency you should use Request.RootURI property at run time :

 SpiderForm1.Action:= Request.RootURI + '/reg';

RootURI will contains current web application name/alias . It is a good practice to make your source
code a platform and a technology independent.

You can set the same name for different inputs, like check box, for example suppose that you have
many groups, and you need to let the user to select a group or many groups:

 SpiderForm1.AddText('Group 1');
 SpiderForm1.AddInput(itCheckbox, 'group', '1');
 SpiderForm1.AddText('Group 2');
 SpiderForm1.AddInput(itCheckbox, 'group', '2');
 SpiderForm1.AddText('Group 3');
 SpiderForm1.AddInput(itCheckbox, 'group', '3');

In this case you should use Group ID as value of check box, and you need to read it like this:

Add

for i:= 0 to Request.ContentFields.Count - 1 do

 if Request.ContentNames(i) = 'group' then
 begin
 Response.Add('
You have selected group # : ' + Request.ContentValues(i));
 end;

 TSpiderPage

TSpiderPage component enables web developer/designer to design HTML pages using any HTML
editor such as Office Writer. The designer should embed tags inside HTML to enable dynamic contents
to be shown. Tags can be like this @tag;

You can replace these tags later in TSpiderPage's OnTag event.
TSpiderPage enables the developer to separate web application user interface design from compiled
code. If there are any change in the design are later needed, the developer may not need to recompile
the web application, instead he/she needs to change only external HTML pages.
HTML pages can be put in the same directory with CGI application, for example cgi-bin directory.

ExtraParams

You will find ExtraParams property in many FreeSpider objects, such as Form and Table. On this
property you can put any additional HTML property such as css class name or java script code:

SpiderTable2.TableExtraParams:= 'class=”myStyle2”';

Please refer to SpiderSample for a complete example of using CSS in FreeSpider.

http://code.sd/freespider/spidersample.zip

HTML Tags

You can use some of ready HTML tags in Response object instead of writing them manually. For
example if you need to display line break in HTML you could do it like;

 Response.Add('
');

Or using this simple method:

 Response.NewLine;

Also you can display many lines, for example 10:

 Response.NewLine(10);

To put a hyper link you can use this ready method:

 Response.AddHyperLink('http://code.sd', 'My Site');

Also you can display a table without using TspiderTable:

 Response.NewTable;
 Response.NewTableRow;
 Response.PutTableData('First Cell');
 Response.PutTableData('Second Cell');
 Response.CloseTableRow;
 Response.CloseTable;

This is an example of a paragraph tag (P):

 Response.AddParagraph('This is my paragraph');

There are many other HTML tags in Response object. More tags can be added later in newer version of
FreeSpider package.

CGI life cycle

CGI applications has a very short life cycle. The application will be uploaded into server memory and
executed starting from user's request (click/refresh, enter URL, etc) until being served (until user gets
result on browser). This time normally can be less than 1 seconds according to simplicity of action's
event handler (OnRequest). For that reason Free Pascal/Lazarus CGI web applications is easy to
develop, no memory leaks will occur, the developer shouldn't be worry about freeing resources,
because these resources will be reserved for a short time and freed automatically when this CGI
application finished execution. These resources can be memory allocations, files, sockets, etc. This
behavior of CGI application grantees more reliability and more uptime for the web application.

In addition to it's short cycle, Free Pascal CGI application run in it's own memory space, not inside web
server's memory, for that reason a buggy CGI application will not affect web server (for example
Apache web server). Deployment or replacing new version of a Free Spider web application in the web
server does not require restarting that web server.

User Session

User session in Free Spider web application is handled by using cookies. Cookies are hidden data that
web application can store in users browsers private data to let the browser send it in the next requests as
a definition to web application of current user and session. The behavior of stateless life cycle makes it
difficult to web applications to link between first, second, third … requests. For that reason we need to
put some data in each web browser to keep session tracking. This methodology is handled by
Response's SetCookie method. This is an example of setting cookies in user browser :

 Response.SetCookie('sessionid', '2', '/');

Cookies path parameter represents the scope of this cookies. If it is “/” that means all web applications
in this server can access this value. Some times you need to have a large web application system which
falls into many projects and then executables, these executables can serve the same user using only one
login by using cookies and the global path “/”.

Previous cookies will be erased when the user closes the browser.
If you want to set more/less expiration time for cookies you can provide an expiration parameter like:

 Response.SetCookie('sessionid', '2', '/', Now + 1);

In this case, cookies will last for one day. You can set it to hours, or minutes, but at first you should
know your time zone in GMT. For example if your country time zone is (GMT + 3), then you should
deduct 3 hours from current time, after that you can set expiration time:

 Response.SetCookie('sessionid', '2', '/', Now -
 EncodeTime(3, 0, 0, 0) + EncodeTime(0, 5, 0, 0));

This will make the sessionid cookie field last for 5 minutes

Cookies can be read using Request's GetCookie method like this:

 Response.Add(Request.GetCookie('sessionid'));

File upload/Download

To upload files into web application, you need to change HTML form's encode type to
multipart/form-data using TSpiderForm's ExtraParam property. You can put this value at design time
or at run time:

 SpiderForm1.ExtraParam:= 'enctype=”multipart/form-data”';

Example:

 Response.Add('<h2>File Upload sample</h2>');
 SpiderForm1.AddInput(itFile, 'upload');
 SpiderForm1.AddInput(itSubmit, 'upload', 'Upload');
 Response.Add(sfUpload.Contents);

Then you can receive this file using Request's ContentFiles property, then save it in a web server
directory, put it in a database or send it back to the user as this example:

 Response.ContentType:= Request.ContentFiles[0].ContentType;
 Response.CustomHeader.Add('Content-Disposition: filename="' +
 Request.ContentFiles[0].FileName + '"');
 Response.Content.Add(Request.ContentFiles[0].FileContent);

Smart Module Loading Design

You can create a web application that contains many Data Modules, each data Module can contain Free
Spider Actions, Pages, Tables, and Forms components, and their required datasets and any other
objects.
The idea of Smart module loading helps developers to splits the design and development of large web
applications into smaller pieces. Also it minimizes the loading of unnecessary components in memory,

only one module will be loaded per request.

The main module that contains SpiderCGI / SpiderApache will be created regardless of requested path,
plus additional data module that contains this SpiderAction/path will be created too. That means if you
have a web application that has 100 different paths, you can put them in 10 modules for example, a
maximum of two modules will be loaded into memory each time the user requests a page or action.

This method will reduce memory consumption because only required objects will be created, and will
make the response more faster because creation objects in memory takes time.
To make a smart module loading design follow these steps:

1. Create new Free Spider web application the same as above examples
2. Add New Data Module
3. Call RegisterClass procedure to register this new data module class. Suppose that this new data

module class is named TdmMod2, then you should write this code in Data Module 2
Initialization section:

initialization
 {$I mod2.lrs}
 RegisterClass(TdmMod2);

4. Add this unit name in main Data Module uses clause
5. Put Free Spider TSpiderAction components and define a new path
6. At main Data Module OnCreate event write this code:

 SpiderCGI1.AddDataModule('TdmMod2', ['/path2', '/path3']);
 SpiderCGI1.Execute;

It if it Apache module, then write this in your main Data Module OnCreate event:

 SpiderApache1.AddDataModule('TdmMod2', ['/path2', '/path3']);

If you have two components (SpiderApache and SpiderCGI) in the same web application then write:

 SpiderCGI1.AddDataModule('TdmMod2', ['/path2', '/path3']);
 SpiderApache1.AddDataModule('TdmMod2', ['/path2', '/path3']);
 SpiderCGI1.Execute;

Paths parameter should contain all the paths that exist in this new Data Module, if you forget to add
any path, then FreeSpider will not find it.

You can find this method in SpiderSample web application at www.code.sd.

Note:
You can put any global variables/objects inside public part of main Data Module, like database
connection objects, socket components, and any other object that are needed in other data modules,
because main data module is always created on every request.

http://code.sd/

Thread pooling

With Apache Module, you can make it faster in response when you are using database by using Thread
pooling. By default thread pooling is disabled, on each request a new instance of web module will be
created and destroyed on each user request. If you turn Thread pooling to True, created data module
will not be destroyed, instead it will be a reusable resource, another requests could use it. This method
will give you a ready, initialized and connected database components, also you can leave lookup tables
open to be reused in another requests. If you use variables or any objects that are declared inside data
module private or public sections, next call for this data module will get their last values, so that you
have to be careful on using these variables and objects, don't forget to initialize the variables and
objects if you need to.

To turn Thread pooling on in your FreeSpider Apache Module, go to the project source code, locate
DefaultHander function and write change it's default code from:

Result:= ProcessHandler(r, TDataModule1, MODULE_NAME, HANDLER_NAME, False);

to

Result:= ProcessHandler(r, TDataModule1, MODULE_NAME, HANDLER_NAME, True);

In the first default option there is no thread pooling, and web modules will be created and freed upon
every request, on the second option, thread pooling will be used.

Note that there is no link between requests from the same user, if the same user do multiple requests
from the browser, FreeSpider may give different web module each time, so that cookies are still used to
identify user session.

If you have a code in Data Modules onCreate event, it will be triggered only when there is no reusable
web module in the thread pool, so that don't rely on this event to execute code that is re queried for
each user request.

If you are using smart module design, only the main module will get benefit of thread pooling, and
other data modules will be created and freed each time, so that put your database connection
component and lookups on main module.

After one minute of last request to your apache module, all thread pooled data modules will be freed.

Maintaining two versions of FreeSpider: CGI
and Apache Module

You can have two versions of executables: CGI executable and Apache Module library in the same
FreeSpider Web application. To do this, suppose that you have already FreeSpider CGI application and
you need to add Apache Module version. Follow these simple steps:

1. In Lazarus click Create new FreeSpider Apache Module Web application

2. Go to Project/Remove from project and remove main unit and close it from editor

3. Save your project in the same directory with your current CGI web application, and name it
differently than CGI project, e.g. add mod_ to project name, like mod_first

4. Go to File/Open and open main.pas file which contains Data Module for your current CGI web
application, and click Project/Add Editor file to project

5. If you have additional Data Modules, then repeat step 4 with each one

6. Drop TSpiderApache component in your main Data Module, and link its OnRequest method
with current existing TSpiderCGI component, make them point to the same code.

7. Add FreeSpider directory into this project library path

8. Modify the configuration constants of Apache Module project source code to a proper one

9. Compile your project, and you should get a Apache Module library version of your old web
application

Note:
You can go back to your CGI project to resume development and and you can go back to Apache
project to produce new version of your web application.

Diagram

To understand the internal structure of FreeSpider package please download this diagram document

Performance

FreeSpider Apache Module can handle more traffic than CGI version and consumes less resources.

You can refer to FreeSpider web page to see the detailed performance test that has been done to
FreeSpider applications.

Motaz Abdel Azeem
www.code.sd

http://www.code.sd/
http://code-sd.com/freespider/FSDiagram.pdf

	id:
	subname:
	address:
	telephone:
	add:

